1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
| from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np import sys import time
def center_point(p1, p2): """ returns a point in the center of the segment ended by points p1 and p2 """ cp = [] for i in range(3): cp.append((p1[i] + p2[i]) / 2)
return cp
def sum_point(p1, p2): """ adds points p1 and p2 """ sp = [] for i in range(3): sp.append(p1[i] + p2[i])
return sp
def div_point(p, d): """ divide point p by d """ sp = [] for i in range(3): sp.append(p[i] / d)
return sp
def mul_point(p, m): """ multiply point p by m """ sp = [] for i in range(3): sp.append(p[i] * m)
return sp
def get_face_points(input_points, input_faces): """ From http://rosettacode.org/wiki/Catmull%E2%80%93Clark_subdivision_surface
1. for each face, a face point is created which is the average of all the points of the face. """
NUM_DIMENSIONS = 3
face_points = []
for curr_face in input_faces: face_point = [0.0, 0.0, 0.0] for curr_point_index in curr_face: curr_point = input_points[curr_point_index] for i in range(NUM_DIMENSIONS): face_point[i] += curr_point[i] num_points = len(curr_face) for i in range(NUM_DIMENSIONS): face_point[i] /= num_points face_points.append(face_point)
return face_points
def get_edges_faces(input_points, input_faces): """
Get list of edges and the one or two adjacent faces in a list. also get center point of edge
Each edge would be [pointnum_1, pointnum_2, facenum_1, facenum_2, center]
"""
edges = []
for facenum in range(len(input_faces)): face = input_faces[facenum] num_points = len(face) for pointindex in range(num_points): if pointindex < num_points - 1: pointnum_1 = face[pointindex] pointnum_2 = face[pointindex + 1] else: pointnum_1 = face[pointindex] pointnum_2 = face[0] if pointnum_1 > pointnum_2: temp = pointnum_1 pointnum_1 = pointnum_2 pointnum_2 = temp edges.append([pointnum_1, pointnum_2, facenum])
edges = sorted(edges)
num_edges = len(edges) eindex = 0 merged_edges = []
while eindex < num_edges: e1 = edges[eindex] if eindex < num_edges - 1: e2 = edges[eindex + 1] if e1[0] == e2[0] and e1[1] == e2[1]: merged_edges.append([e1[0], e1[1], e1[2], e2[2]]) eindex += 2 else: merged_edges.append([e1[0], e1[1], e1[2], None]) eindex += 1 else: merged_edges.append([e1[0], e1[1], e1[2], None]) eindex += 1
edges_centers = []
for me in merged_edges: p1 = input_points[me[0]] p2 = input_points[me[1]] cp = center_point(p1, p2) edges_centers.append(me + [cp])
return edges_centers
def get_edge_points(input_points, edges_faces, face_points): """ for each edge, an edge point is created which is the average between the center of the edge and the center of the segment made with the face points of the two adjacent faces. """
edge_points = []
for edge in edges_faces: cp = edge[4] fp1 = face_points[edge[2]] if edge[3] == None: fp2 = fp1 else: fp2 = face_points[edge[3]] cfp = center_point(fp1, fp2) edge_point = center_point(cp, cfp) edge_points.append(edge_point)
return edge_points
def get_avg_face_points(input_points, input_faces, face_points): """
for each point calculate
the average of the face points of the faces the point belongs to (avg_face_points)
create a list of lists of two numbers [facepoint_sum, num_points] by going through the points in all the faces.
then create the avg_face_points list of point by dividing point_sum (x, y, z) by num_points
"""
num_points = len(input_points)
temp_points = []
for pointnum in range(num_points): temp_points.append([[0.0, 0.0, 0.0], 0])
for facenum in range(len(input_faces)): fp = face_points[facenum] for pointnum in input_faces[facenum]: tp = temp_points[pointnum][0] temp_points[pointnum][0] = sum_point(tp, fp) temp_points[pointnum][1] += 1
avg_face_points = []
for tp in temp_points: afp = div_point(tp[0], tp[1]) avg_face_points.append(afp)
return avg_face_points
def get_avg_mid_edges(input_points, edges_faces): """
the average of the centers of edges the point belongs to (avg_mid_edges)
create list with entry for each point each entry has two elements. one is a point that is the sum of the centers of the edges and the other is the number of edges. after going through all edges divide by number of edges.
"""
num_points = len(input_points)
temp_points = []
for pointnum in range(num_points): temp_points.append([[0.0, 0.0, 0.0], 0])
for edge in edges_faces: cp = edge[4] for pointnum in [edge[0], edge[1]]: tp = temp_points[pointnum][0] temp_points[pointnum][0] = sum_point(tp, cp) temp_points[pointnum][1] += 1
avg_mid_edges = []
for tp in temp_points: ame = div_point(tp[0], tp[1]) avg_mid_edges.append(ame)
return avg_mid_edges
def get_points_faces(input_points, input_faces):
num_points = len(input_points)
points_faces = []
for pointnum in range(num_points): points_faces.append(0)
for facenum in range(len(input_faces)): for pointnum in input_faces[facenum]: points_faces[pointnum] += 1
return points_faces
def get_new_points(input_points, points_faces, avg_face_points, avg_mid_edges): """
m1 = (n - 3.0) / n m2 = 1.0 / n m3 = 2.0 / n new_coords = (m1 * old_coords) + (m2 * avg_face_points) + (m3 * avg_mid_edges)
"""
new_points = []
for pointnum in range(len(input_points)): n = points_faces[pointnum] m1 = (n - 3.0) / n m2 = 1.0 / n m3 = 2.0 / n old_coords = input_points[pointnum] p1 = mul_point(old_coords, m1) afp = avg_face_points[pointnum] p2 = mul_point(afp, m2) ame = avg_mid_edges[pointnum] p3 = mul_point(ame, m3) p4 = sum_point(p1, p2) new_coords = sum_point(p4, p3)
new_points.append(new_coords)
return new_points
def switch_nums(point_nums): """ Returns tuple of point numbers sorted least to most """ if point_nums[0] < point_nums[1]: return point_nums else: return (point_nums[1], point_nums[0])
def cmc_subdiv(input_points, input_faces):
face_points = get_face_points(input_points, input_faces)
edges_faces = get_edges_faces(input_points, input_faces)
edge_points = get_edge_points(input_points, edges_faces, face_points)
avg_face_points = get_avg_face_points(input_points, input_faces, face_points)
avg_mid_edges = get_avg_mid_edges(input_points, edges_faces)
points_faces = get_points_faces(input_points, input_faces)
"""
m1 = (n - 3) / n m2 = 1 / n m3 = 2 / n new_coords = (m1 * old_coords) + (m2 * avg_face_points) + (m3 * avg_mid_edges)
"""
new_points = get_new_points(input_points, points_faces, avg_face_points, avg_mid_edges)
"""
Then each face is replaced by new faces made with the new points,
for a triangle face (a,b,c): (a, edge_point ab, face_point abc, edge_point ca) (b, edge_point bc, face_point abc, edge_point ab) (c, edge_point ca, face_point abc, edge_point bc)
for a quad face (a,b,c,d): (a, edge_point ab, face_point abcd, edge_point da) (b, edge_point bc, face_point abcd, edge_point ab) (c, edge_point cd, face_point abcd, edge_point bc) (d, edge_point da, face_point abcd, edge_point cd)
face_points is a list indexed by face number so that is easy to get.
edge_points is a list indexed by the edge number which is an index into edges_faces.
need to add face_points and edge points to new_points and get index into each.
then create two new structures
face_point_nums - list indexes by facenum whose value is the index into new_points
edge_point num - dictionary with key (pointnum_1, pointnum_2) and value is index into new_points
"""
face_point_nums = []
next_pointnum = len(new_points)
for face_point in face_points: new_points.append(face_point) face_point_nums.append(next_pointnum) next_pointnum += 1
edge_point_nums = dict()
for edgenum in range(len(edges_faces)): pointnum_1 = edges_faces[edgenum][0] pointnum_2 = edges_faces[edgenum][1] edge_point = edge_points[edgenum] new_points.append(edge_point) edge_point_nums[(pointnum_1, pointnum_2)] = next_pointnum next_pointnum += 1
"""
just doing this case for now:
for a quad face (a,b,c,d): (a, edge_point ab, face_point abcd, edge_point da) (b, edge_point bc, face_point abcd, edge_point ab) (c, edge_point cd, face_point abcd, edge_point bc) (d, edge_point da, face_point abcd, edge_point cd)
new_faces will be a list of lists where the elements are like this:
[pointnum_1, pointnum_2, pointnum_3, pointnum_4]
"""
new_faces = []
for oldfacenum in range(len(input_faces)): oldface = input_faces[oldfacenum] if len(oldface) == 4: a = oldface[0] b = oldface[1] c = oldface[2] d = oldface[3] face_point_abcd = face_point_nums[oldfacenum] edge_point_ab = edge_point_nums[switch_nums((a, b))] edge_point_da = edge_point_nums[switch_nums((d, a))] edge_point_bc = edge_point_nums[switch_nums((b, c))] edge_point_cd = edge_point_nums[switch_nums((c, d))] new_faces.append((a, edge_point_ab, face_point_abcd, edge_point_da)) new_faces.append((b, edge_point_bc, face_point_abcd, edge_point_ab)) new_faces.append((c, edge_point_cd, face_point_abcd, edge_point_bc)) new_faces.append((d, edge_point_da, face_point_abcd, edge_point_cd))
return new_points, new_faces
def graph_output(output_points, output_faces, fig): ax = fig.add_subplot(111, projection='3d')
"""
Plot each face
"""
for facenum in range(len(output_faces)): curr_face = output_faces[facenum] xcurr = [] ycurr = [] zcurr = [] for pointnum in range(len(curr_face)): xcurr.append(output_points[curr_face[pointnum]][0]) ycurr.append(output_points[curr_face[pointnum]][1]) zcurr.append(output_points[curr_face[pointnum]][2]) xcurr.append(output_points[curr_face[0]][0]) ycurr.append(output_points[curr_face[0]][1]) zcurr.append(output_points[curr_face[0]][2])
ax.plot(xcurr, ycurr, zcurr, color='b')
input_points = [ [-1.0, 1.0, 1.0], [-1.0, -1.0, 1.0], [1.0, -1.0, 1.0], [1.0, 1.0, 1.0], [1.0, -1.0, -1.0], [1.0, 1.0, -1.0], [-1.0, -1.0, -1.0], [-1.0, 1.0, -1.0] ]
input_faces = [ [0, 1, 2, 3], [3, 2, 4, 5], [5, 4, 6, 7], [7, 0, 3, 5], [7, 6, 1, 0], [6, 1, 2, 4], ]
iterations = 7
plt.ion() output_points, output_faces = input_points, input_faces
for i in range(iterations): fig = plt.figure(1) plt.clf() graph_output(output_points, output_faces, fig) output_points, output_faces = cmc_subdiv(output_points, output_faces)
plt.pause(3)
|